
Declarative, Code-Based Forms UI

RYAN DAVIS

Queensland C# Mobile Developers Meetup

2019 06 25

• Ryan Davis

• Professional Mobile LINQPad Developer

• essential-interfaces – use DI/mocking with Xamarin.Essentials

• dumpeditable-linqpad – extensible inline object editor for LINQPad

• jsondatacontext-linqpad – json data context driver for LINQPad

• sockets-for-pcl, sockethelpers – socket comms in a PCL
(today you should use netstandard sockets why are you all still installing this)

whoami

ryandavis.io rdavis_au

rdavisau

 the story of code and xaml

 the hero coded ui needs

 demos, samples

 resources

to cover

in the beginning, code was the favourite

When Xamarin.Forms was announced (late May 2014), it shipped with support for

code and XAML. In the early days, blog posts featured C#-based samples.

Code sample from the original Xamarin.Forms announcement post

however, the tide quickly turned

For a variety of reasons, XAML became favoured by a majority of Forms developers.

UI in C# UI in Fringe

languages

UI in XAML

Pretty much

everyone

the xaml popularity was unstoppable

55

1
0

30

60

N
u

m
b

e
r

o
f

su
b

m
is

si
o

n
s

45

1
0

30

60

N
u

m
b

e
r

o
f

su
b

m
is

si
o

n
s

n=102 But Possibly Real World Representative Comparison of Popularity

Between XAML and C# based on Recent Xamarin.Forms Challenges
(higher is better)

Visual Challenge CollectionView Challenge

still, a dedicated few stayed hopeful for C#

https://forums.xamarin.com/discussion/123771/using-

declarative-style-c-instead-of-xaml-should-xamarin-

redirect-xaml-efforts-elsewhere?

https://forums.xamarin.com/discussion/123771/using-declarative-style-c-instead-of-xaml-should-xamarin-redirect-xaml-efforts-elsewhere?

using XF’s API from C# can be awkward

 Some tasks that are ‘easy’ in XAML feel heavy handed in C#

 Xamarin.Forms API will often force you to adopt imperative code

 People look at you funny

but we can use C# to make using C# better

 Helper methods that wrap or abstract awkward tasks

 Syntax that encourages a more declarative usage

 DSL-like methods that minimise boilerplate

enter CSharpForMarkup by VincentH.NET

 Supports the creation of concise, declarative, readable UI definitions

 Appropriately constrains clever code solutions in UI definitions

 Enables greater use of type-safety than raw code or XAML alone

 Battle-tested, used in production apps

 Lets you write code that makes you feel good when you look back at it

A set of extension methods and helper functions that

allow the use of a declarative style of C# instead of

XAML for the creation of Xamarin Forms UI.

https://github.com/VincentH-Net/CSharpForMarkup

https://github.com/VincentH-Net/CSharpForMarkup

just download one file from the repo

Read the README for good examples, tips, tricks and guidelines

just download one file from the repo

Read the README for good examples, tips, tricks and guidelines

Basic example of various helpers in use
Video of a shipping app using these helpers (see Resources)

CSharpForMarkup walkthrough

-= declarative code-based xf ui =-

fluent, declarative control positioning

Specifying property names and values for common layout properties significantly

increases the verbosity of C# based UI code.

CSharpForMarkup includes most common properties in concise helper methods.

Layout options can often be specified without

sacrificing declarative style but are quite verbose

CSharpForMarkup simplifies this code by reducing repeated

code and providing additional helpers like .Center, which

covers both vertical and horizontal positioning at once

simple side effects made easy

Ordinarily, actions like assigning to a field, attaching an event handler or calling a

method on a control would all require dedicated statements.

.Assign and .Invoke allow these without sacrificing declarative code.

Side-effects like assignment and setting event

handlers typically force an imperative style

CSharpForMarkup helpers handle these nicely

concise, readable grid positioning

Grid positioning is particularly awkward from code.

.Row, .Col, .RowCol dramatically improve readability.

Assigning grid position normally sux, and again

favours an imperative style
Using CSharpForMarkup, grids positioning can be

performed cleanly and easily

type-safe, flexible grid ordering

Grid re-ordering is painful whether using XAML or

code

CSharpForMarkup allows you to use enums to

describe your grid positioning. By tieing interface

definition to enum values, the “domino effect”

associated with grid re-ordering can be removed.

Strongly typed row and column definitions

makes changes later much easier

simple – or sophisticated – inline bindings

Code-based Xamarin.Forms bindings can involve verbose ceremony.

CSharpForMarkup includes inline .Bind helpers with default target properties to

reduce the need for boilerplate, and a .BindTapGesture helper that attaches a

TapGestureRecogniser to a control, bound to the specified command.

Code-based bindings also typically require

imperative code style and multiple statements
CSharpForMarkup helpers improve brevity and

readability dramatically

type-safe inline valueconverters

ValueConverters can be specified directly within .Bind calls when needed.

A FuncConverter<TFrom, TTo> allows conversions to be defined in line.

CSharpForMarkup includes some

common built in converters
Or you can define your own in a type-safe manner

fonts and styles

Styles can be cleanly defined and applied in a type-safe manner using the Style

helper class and associated methods.

Defining styles is straightforward and readable

Styles can derived from other styles

Once define, styles are easily applied using the Style method

formatted spans are no problem

.FormattedText takes a params Span[] argument set

Spans can be bound to taps or gestures

Individual span elements have the same binding

powers as other views

other benefits of code-based ui

-= declarative code-based xf ui =-

defining mini-DSLs can reduce repetition

CSharpForMarkup balances conciseness, consistency, constraint

and maintainability.

Defining a DSL via helper methods can result in code that is

potentially more concise and readable, at the cost of consistency

and maintainability.

defining mini-DSLs can reduce repetition

CSharpForMarkup balances conciseness, consistency, constraint

and maintainability.

Defining a DSL via helper methods can result in code that is

potentially more concise and readable, at the expense of

consistency and maintainability.

code-based hot reload is gr8

 Iterate on UI (obviously)

 Iterate on animations and transitions

 Iterate on viewmodels, services etc.

Live Reload with Continuous

https://www.youtube.com/watch?v=RMMccK_OI9w

https://www.youtube.com/watch?v=RMMccK_OI9w

wrapping up

-= practical uses for the mono interpreter=-

useful resources

• CSharpForMarkup
https://github.com/VincentH-Net/CSharpForMarkup

• VincentH on twitter
https://twitter.com/vincenth_net

• Shipping app using CSharpForMarkup
http://www.youtube.com/watch?v=50N1LL_Txe8

• Twitch – Xamarin.Forms C# Markup with Ryan Davis
https://www.twitch.tv/videos/441875218

• Xappy Login Page Code
https://github.com/rdavisau/Xappy/

• Xamarin.Forms 4.0 Challenge Submissions (code-based)
https://ryandavis.io/xamarin-forms-4-0-challenge-submissions/

Visual Challenge

CollectionView Challenge

https://github.com/VincentH-Net/CSharpForMarkup
https://twitter.com/vincenth_net
http://www.youtube.com/watch?v=50N1LL_Txe8
https://www.twitch.tv/videos/441875218
https://github.com/rdavisau/Xappy/blob/master/Xappy/Xappy/Content/Scenarios/Login/LoginPage.cs
https://ryandavis.io/xamarin-forms-4-0-challenge-submissions/

questions

