and
not so Pmc“ca\

Practical Uses for the Mono Interpreter

RYAN DAVIS
Queensland C# Mobile Developers Meetup

2019 05 28

whoami

Ryan Davis

Professional Mobile LINQPad Developer
ryandavis.io rdavis_au

rdavisau

essential-interfaces — use DI/mocking with Xamarin.Essentials
dumpeditable-lingpad - extensible inline object editor for LINQPad

jsondatacontext-lingpad - json data context driver for LINQPad

sockets-for-pcl, sockethelpers — socket comms in a PCL

(today you should use netstandard sockets why are you all still installing this)

o cover

what is the mono interpreter
practical uses
samples and demos

resources

-= practical uses for the mono interpreter=-

Putting .NET on iOS posed a major challenge...

Apple explicitly forbids the use of runtime code generation and execution.
NET apps are traditionally executed using JIT compilation — a form of codegen.

Life of a an typical .NET app

Build time Run time
Not executable The CPU can
by the CPU execute this
\/ \
C#H/F# compile JIT compile
> NET IL > i
SOUTEE NET IL Machine Code
MyApp.exe MyApp.exe
Traditional .NET apps are compiled to assemblies containing At runtime, method implementations are compiled to
intermediate, platform independent bytecode - MSIL. machine code ‘Just in Time’ into a form executable by the
CPU which makes Apple angry

..but Xamarin had an answerl

Xamarin developed an AOT compiler to allow .NET applications to run on iOS.
The AOT compiler turns IL info architecture-specific machine code at build fime.

Life of a Xamarin.iOS app
Build time Run time
; +
Machine Code 4
. (armé4)
compile
Sl > NET IL ¢ .
Source \ a
Machine Code
MyApp.
YAPP.exe (armv7)
At runtime, Xamarin.iOS picks
After compiling source to IL, the IL is AOT'd for as many the AOT data from the bundle
target platforms as need to be supported that matches the running CPU.
Apple is happy.

AOT has many benefits, but also drawbacks

AOT'ing enables Xamarin.iOS$

an AOT'd application (generally) outperforms the same app JIT'ed at runtime

certain errors surface during compilation that would otherwise occur at JIT time

However:
AOT'Ing produces larger binaries
AOT'Ing involves longer build times

“AOT only” execution essentially prohibits dynamic execution, which causes
challenges for various kinds of development and use cases in .NET

(and mixed
mode execution)

enter the revived Mono Interpreter

A new runtime option that enables dynamic execution opportunities and
size/performance tradeoffs for Xamarin.iOS, whilst remaining within the
restrictions imposed by Apple and the iOS runtime.

Updated interpreter. enables the ‘execution’ of .NET IL without code generation

Mixed-AOT mode: enables combined execution of AOT'd code and interpreted IL

In practice:
Enables use of APIs like and advanced techniques using the keyword

Enables code generation using methods like

recently announced preview for Xamarin.iOS

Introducing the Xamarin.iOS Interpreter master v transform.c

Historically iOS applications have had a number of limitations when running on a device, as Apple CoffeeFlux
disallows the execution of dynamically generated code. Applications are compiled “Ahead of Time”
(AQT) before deployment because of this. You can read more about this architecture here.

“Ahead of Time"” AOT

In most cases, AOT can provide performance benefits. It can also restrict a number of C# features

AsEn

FAPEL P NRABLLFE

-

from being used: .
6167 lines (5674 sloc) 186 KB

® Assembly.load and System.Reflection.Emit
* Some uses of the C# dynamic feature

The team has been hard at work at overcoming these limitations while abiding by platform
restrictions. The result is a new interpreter for Xamarin.iOS,

Meno is complementing its Just-in-Time compiler and its static compiler with a .NET
The Interpreter

Today we are promoting this experimental work into a preview ready for general testing.

interpreter allowing a few new ways of running your code.

In 2001 when the Mono project started, we wrote an interpreter for the .NET instruction
set and we used this to ap a sted-h development environment on

The Interpreter, as the name implies, allows you to interpret at run time some C# parts of your
application while compiling the rest ahead of time as usual. Get started previewing by installing the

—poctegectal

Linux.

Interpreter updated late 2017 Mixed-mode + interp announced for Has its roots in a
Xamarin.iOS in March 2019, 2001 relic!
hiding in builds for months prior

A migueldeicaza on Nov 13, 2017 [-]

It is worth pointing out that when we dropped the interpreter, we only had two or three engineers working on the VM and they had to both develop
the JIT and maintain the interpreter, plus work on the GC, io-layer and other VM features.

Without a reason to keep the interpreter (the world was a JIT-friendly place back then), it made no sense to maintain it.

But times change, statically compiled environments are more common nowadays (iOS, PlayStation, Xbox, tvOS, watchOS) and with it the need to
have dynamic capabilities.

To put things in perspective, adding generics to the revived interpreter probably took an engineer that was not familiar with .NET about 4-6 weeks
of work.

19 contributors ﬁﬁ.ﬁ”éi.@lﬂﬂnmmm.%.

the interpreter affords us dynamic execution

In general, an interpreter produces an execution-like result from non-machine
executable input eg:

Source code of a programming language (javascript, python)

Machine code of a different architecture (emulating a Gameboy cpu)

So, we can use the mono interpreter to process IL instead of JIT'ing it - giving us

‘execution’ of dynamic code without executing if. ®

o ~ : Q

%Q- - —_ o
Interpreted IL is significantly slower than AOT'd code. ig/__ “"' /«vp,
Thanks to mixed-mode execution, we can use swifch between > 1 Q‘l

AOT'Ing and interpreting where it makes sense.

but --interpreter is currently ios device only

Ok cool but we have been
able to use Assembly.Load
and Reflection.Emit the
whole fime fam

Ha ha | can use
—-interpreter

and u cant

The 10S device target has the most to gain from an interpreter, given the iOS
simulator and android devices/emulators all support JIT compilation.

Our practical uses therefore fall into two categories:

Improvements to development time experience for device specific features
Fundamentally new opportunities for release capabilities

how 2

Add to your mtouch args
Additional mtouch arguments: --interpreter -
Without arguments, actually expands to something like this:
Additional mtouch arguments: --interpreter=-mscorlib --aot=interp >

Meaning, “interpret everything except mscorlib, and enable mixed execution”

With this set of flags, any time an assembly with IL and no AOT data is encountered,
the runtime will fall back to the interpreter to execute it.

static void
interp_delegate_ctor (MonoObjectHandle this_obj, MonoObjectHandle target, gpointer addr, MonoError xerror)

{

/%

resul, of an LDRTN opcode, i.e. an InterpMethod

ret! (Ir Methodx)addr;

METHOD_ATTRIBUTE_STATIC)) {

no_get_delegate_invoke_internal (mono_handle_class (this_obj));

ates must not have null check x/

re_internal (imethod->method)->param_count == mono_method_signature_internal (invoke)
_HANDLE_IS_NULL (target)) {

argument (error, "this", "Delegate to an instance method cannot have null 'this'");

-= practical uses for the mono interpreter=-

Inner-loop development speed

default interpreter options disable AOT

Ordinary AOT debug build

create
mono compile t bundle
Cszju/rclz:j — NET IL e, Machine Code ’

at least it's just one App Bundle
arch this time

--interpreter debug build

C# /| F# mono compile create bundle take a nap
Source . NETIE . @ :

App Bundle

Add to your debug configuration to save time and energy!

skipping the AOT step improves compile times

Highly Unscientific But Possibly Real World Representative* Comparison of Build
Times between AOT and non-AOT (--interpreter) iOS Debug Device Builds

(lower is better)

AQOT mInferp
Full build 139 Incremental build after small change
__120 120
0 O
£ £
£ 90 £ 90
ke 70 4 ke
= S5 56
Q 0
o 60 52 o 60 "
3 30 f: S0
25
a 30 a 30 20 19
%
0 0

Hanselman.Forms AR Bound Unnamed App X Hanselman.Forms AR Bound Unnamed App X

Look ma, no aotdatal

Ordinary AOT buvild

Additional mtouch arguments: L

System.Xml.Ling.dll
System.Xml.Ling.aotdata.arm64

System.Xml.dll

System.Xml.aotdata.arm64
System.Web.Services.dll
System.Web.Services.aotdata.arm64
System.Transactions.dll
System.Transactions.aotdata.arm64
System.Threading.Tasks.Extensions.dll
System.Threading.Tasks.Extensions.aotdata.arm64

.method public final hidebysig virtual newslot instance bool
Equals(
valuetype System.Threading.Tasks.ValueTask other
) cil managed noinlining

{

.maxstack 8

ret

--interpreter build

Additional mtouch arguments: --interpreter

B system.xml.Ling.dll

B system.xml.dll

. System.Web.Services.dll

B System.Transactions.dll

B System.Threading.Tasks.Extensions.dll

.method public final hidebysig virtual newslot instance bool
Equals(
valuetype System.Threading.Tasks.ValueTask other
) c¢il managed

{

.maxstack 8

// [78 7 - 78 35]
ldarg.e // this
1dfld object System.Threading.Tasks.ValueTask::_obj
ldarg.1 // other

1ldfld object System.Threading.Tasks.ValueTask::_obj
bne.un.s IL_eeld

- 71 s8]

ldarg.®e // this

1ldfld int16 System.Threading.Tasks.ValueTask:: token
ldarg.1 // other

1dfld intle System.Threading.Tasks.ValueTask:: token
ceq

ret

| 2

Lots of benefits, only minor drawbacks:

Inner loop development — practical use?

Lower performance than AOT'd (debug builds don’t represent real performance anyway)

Moy encounter a bug in the in’rerpre’rer (but then you'll report it and be helping the world)

Casting "nfloat ™ to "nint" crashes when running under "--
interpreter” #5509
rdavisau opened this issue on 27 Mar - 0 comments

a rdavisau commented on 27 Mar

| reproduced this on two builds of Xamarin.iOS - the current preview from the recent interpreter
announcement, and an earlier build from a few months back that | built from source. My original usage
was not this simple, but | was able to isolate the crash to a cast of an nfleat to nint, which is
(happily) easy to work around.

Steps to Reproduce
1. Create new iOS single view app
2. Add —-interpreter to mtouch arguments

3. Add below code to FinishedLaunching before the return statement

var notOof = (int)(float)l;
var not0Oof2 = (nint)(float)(nfloat)1;
var notOof3 = (nint)(int)(nfloat)1;

var oof = (nint){nfloat)l;

4. Add breakpoint on first line, begin debugging and step each statemert:

Expected Behavior

All statements execute without issue, as occurs when running without the ——interpreter flag.

[interp] fix op_explicit for cast from nfloat to nint and
vice versa #1420

ISIVEIGECE lewurm merged 1 commit into mono:master from lewurm:interp-native-types-& B on 25 Apr

(& Conversation 9 -0- Commits 1 ®/ Checks 1 Files changed 2 +32 -0 EEEEE

Changes from all commits v File filter... ¥ Jumpto... v f o 2

v 27 mmmmm mono/mini/builtin-types.cs [Ed

b2 24 @@ -1357,6 +1357,33 @@ static int test_@_nfloat_fieldload ()

return 0;

static int test_@_much_casting ()
{
var notOof = (int)(float)l;
if (notOof != 1)
return 1;

var notOof2 = (nint)(float)(nfloat)1;
if (not0of2 != 1)
return 2;

var notOof3 = (nint)(int)(nfloat)l;
if (notOof3 != 1)

inner loop development - tips

Handle bugs or performance sensitive code by selectively AOT'Ing assemblies:

will cause the assembly to be AOT'd, not interpreted

To verity that the right parts are/aren’t being interpreted, inspect the app bundle:

Additional mtouch arguments:

Request that Xamarin.Forms.Core is not interpreted

e

--interpreter=-Xamarin.Forms.Core --aot=interp N - .

~

ARKitMeetup

B xamarin.ios.dll
B Xamarin.Forms.Platform.i0S.dll
B Xamarin.Forms.Platform.dl|

no aot dataq, these will be
interpreted at run time

B Xamarin.Forms.Core.dll
. Xamarin.Forms.Core.aotdata.arm64

XF.Core was AOT'd

-= practical uses for the mono interpreter=-

H O'l' e I oQ d (of device-only features)

https://emojipedia.org/fire/

device features are the most painful to debug

alternating between typing on the pc and working with the device
work that requires movement, being away from the pc etc (e.g. ARKit)
work that requires fiddling and lacks tooling (e.g. ARKIif)

longer deploy times (even with --interpreter)

hot reload is the hero we need

device features are things like

ARKit Metal Camera

Barcode
SceneKit*

SpriteKit*
P Push Notifications

*these do work on the simulator but with unusable performance

// now we can create a geometry
var box = new SCNBox

Width = size.Width,

Length = size.Height,

Height = 0.001f, // because cards are flat,
ChamferRadius = @

// make it reddish .
box.FirstMaterial.Diffuse.Contents = UIColor.Red.ColorWithAlpha(.5f);

// create a node with this geometry
var cardNode = new SCNNode

Geometry = box

// add it to the node we were given
node.Add(cardNode) ;

// cool!
// but red is too angry
oublic override void ViewWillAppear(bool animated)

base.ViewWillAppear(animated);

ek D

e -

—dp
Looded astently; esal-M) (Dxtarsal)
Looted wisesdlyr wwal 364 [Extersal)
Looded wisemblyr aval-M% (External)
Lsaded aasemblys aval-288 (Rcrersal)

hot reload - practical use?

Lots of benefits, some drawbacks:
no endorsed hot reload solutions

hot reload + interpreter is an additional level of complication over
inferpreter alone — some bugs exist in this combination that don’t exist in
normal use

hot reload - tips

tailor your hot reload setup to the task at hand

consider what state should survive between changes e.g.:
Ul — none or viewmodel state
2D AR — AR view but not AR state
3D AR — AR view and AR state

-= practical uses for the mono interpreter=-

Hot patching

https://emojipedia.org/fire/

releasing on ios can be scary

Apple review basically guarantees at least 8 hours of lead time for any
release/fix

Apple scrutiny is very inconsistent

Maybe it would be nice to patch our app outside of the normal release
Process

| execute, therefore i patch

Transparent hot patching would need lots of runtime magic that doesn’t (yete) exist
We can roll our own w/aAssembly . Load, but our app must ‘expect’ to be patched

Fortunately, .NET tends towards abstraction and loose-coupling:

_navigationService.Navigate('"myapp://home");
AboutViewModel(

INavigationService navigationService, _navigationService.PushAsync<lLoginViewModel>();
IFeatureService featureService,
IUserService userService) Navigator calls not coupled to view

or viewmodel implementations

DependencyService.Get<IUserService>();

Scenes =
. , AppDomain.CurrentDomain
DependencyService.Get<UserService>(); .GetAssemblies ()
.SelectMany(x => x.GetTypes())
.Where(x => typeof(BaseARViewController).IsAssignableFrom(x))

Code not tied to specific.: implementations, lllerel e = L iThbsiract)
easy to replace with hot paich .0rderBy(x => x.Namespace)

.Select(x =>

Dynamic menu contents, easy to augment with hot patch

roll your own hotpatch in 3 easy steps

1. detect and download hot patch if available
simplest case: .dll, complicated case: bundle with dlls, assets, etc.

can do in the background to keep checks off the startup path
2. load patch contents at every startup (volatile patching)

3. integrate patch content at appropriate points, for example:
add/override or intercept service registration
add/replace navigator references

any other hard coded patch handling

private UIViewController ProcessHotPatch(byte[] patchData)

Scenes = ~ var asm = Assembly.Load(patchData);
Appbomain.CurrentDomain . var patchedHomeViewControllerType =
.GetAssemblies() i asm.GetTypes().FirstOrDefault(x => x.Name.EndsWith("HomeViewController"));

'SE1ECtMany(x == X'GEtTpr"?”) . : return patchedHomeViewControllerType !'= null

.Where(x => typeof(BaseARViewController).IsAssignableFrom(x)) i ? Activator.CreateInstance(patchedHomeViewControlierType) as UIViewController
.Where(x => !x.IsAbstract) j : null;

.0rderBy(x => x.Namespace)

Carrier = 5:66 PM |

Tranzlation and creepy masks
not areal arkit derno

Expression
kdonitoring

How do you do?

Face Detecting
(nothing else)

Face Tracking

and creepy masks

» Hamagon City

Use the eyebrows, Luke.

Hot patched
cantraller

Expression
honitoring

rivate void PatchServices(IEnumerable<Type> serviceTypes)

foreach (var st in serviceTypes)
foreach (var @if in st.GetInterfaces())
ContainerRegistry.Register(@if, st);

p
{
}

void ProcessHotPatch(byte[] patchData)

rivate void PatchPages(Assembly asm, IEnumerable<Type> pageTypes)

asm = Assembly.Load(patchData);

serviceTypes =

asm.GetTypes()

.Where(x => x.IsSubclassOf(typeof(ServiceBase)));

foreach (var p in pageTypes)

// use bad code to determine expected vm name
var pageName = p.Name.Split('.').Last().Replace("Page", "");
var vmName = $"{pageName}ViewModel";
pageTypes =
asm.GetTypes()
Where(x => x.IsSubclassOf{typeof(Page)));

// check for patched vm
var vmType =
asm.GetTypes ()

,) .FirstOrDefault(t => t.Name.EndsWith(vmName));

PatchPages(asm, pageTypes); // register vm for page

if (vmType !'= null)
ViewModellLocationProvider.Register(p.Name, vmType);

R LT T T PP &

// register page

{
i ContainerRegistry.RegisterForNavigation(p, p.Name);
}

p
{
}

hot patching — practical use? the good

Changes can be deployed and integrated extremely quickly, various options
available to keep startup impact low

Using mixed-AOT allows everything originally shipped to be AOT'd and only the
Incoming patch contents to be interpreted, minimal performance impact

Hot patching as a concept is blessed by Apple, and “proven’” by React Native

3.3.2 Except as set forth in the next paragraph, an Application may not download or install
executable code. Interpreted code may be downloaded to an Application but only so long as
such code: (a) does not change the primary purpose of the Application by providing features or
functionality that are inconsistent with the intended and advertised purpose of the Application as
submitted to the App Store, (b) does not create a store or storefront for other code or
applications, and (c) does not bypass signing, sandbox, or other security features of the OS.

hot patching — practical use? the bad

Increases versioning complications
Can fragment userbase — clients who do/don’t have hot patches

If patches cause side effects, user state is no longer easy to reason about
Patching significant changes is a great way 1o see how effective the linker is

Certain classes of errors might be uncatchable and unrecoverable, or present
In sections of the app without error handling

Allowing execution of code from a remote source has many security concerns.

https://emojipedia.org/collision-symbol/

hot patching - fips

Use to ensure all original code is AOT'd, and disable removal
of the dynamic registrar if your patch will include types deriving from native types

Additional mtouch arguments: --interpreter=-all --aot=interp --optimize=-remove-dynamic-registrar >

A reasonable set of hot-patch friendly mtouch arguments

Try this at home, or maybe with QA builds, not in production I’

Feature flag it, include a rollback/unpatch allowance, don’'t @ me

-= practical uses for the mono interpreter=-

Embedded repl

sometimes you want to code inside your app*

device related features like AR can be fiddly and highly state-dependant

you can persist state when hot reloading, but complicated preservation usually
pollutes code

sometimes you're not at your PC when you want to fiddle programmatically
with your appe

dynamically executing code within the context of the running app has its uses,
probably

*citation needed

arepl is possible w/the evaluator + interpreter

the mono interpreter is an IL interpreter, but we'd prefer not to write IL

we can approximate a c# repl by using the mono evaluator to generate |IL
from c#, which the interpreter then executes

Enumerable.Range(0, 10) Eval —p — . H.;.'I-_ +
A
Write C# source Compile to IL using “Execute” IL via

Mono Evaluator interpreter

HAPFY HAPFY REFL
HAPPY HAPPY REPL

= new BoxView { BackgroundColor = Color Blue }
KamarinForms.B

I ‘} " e > Rthis
z 1 b 4 <ARKithMeetup_Demos_ StationaryShipViewController:
—i 0117 1b3a

> var slider = new UlSlider()

> slider.\ValueChanged += delegate {

var v = slider Value;
@this.Ship.RotateBy(v,v,v,0.25);

) ‘,,/“M“Z”‘

= sk.PresentScene(ShaderScene Randomi))

Enumerable.Range(0, 10)

var what = Console.ReadlLine();
var who = target;

$"Asking {who} to execute\r\n{what}".Dump();

await connection.SendAsync("RemoteEval"”, who, wl

Asking HomeViewController-c4f399d5-bc4c-4b53-99ff-bef5b43f1807 to execute

new BoxView { BackgroundColor = Color.Blue }
Asking HomeViewController-c4f399d5-bc4c-4b53-99ff-bef5b43f1807 to execute
new UISlider()

throw new Exception()|

embedded repl, remote-eval — practical use?

this was meant to be the meme use for the interpreter but it was actually kind
of cool

generalising to the ideas of arbitrary and remote execution there are a ot of
practical uses

the same security considerations that apply to hot patching apply here if you
want to use it in production

embedded repl - tips

use an updated version of Mono.CSharp.dll from your Xamarin install, not the
one on NuGet. It has all the MCS features and fixes that have been
implemented since 2015.

Mono.CSharp
Mono C# Compiler

Id Mono.CSharp
Author Mono Development Team . .
. Name Date Modified Size
Published 8/05/2015
Downloads 145,356 R Mono.CSharp.dll

Old busted New shiny!

-= practical uses for the mono interpreter=-

how to start your interpreter adventures

— Easy Mode - Interpreteronly —————

r

#1 Inner loop dev speed #3 Hot patching

Although the feature itself is in preview, any
recent stable Xamarin.iOS build supports
the flag

— Hard Mode - Interpreter + Code Gen ——

%
IE.:" __:..: =

#2 Hot Reload #4 Embedded REPL

For code generation
() you need a

Xamarin.iOS build on top of a mono runtime
that doesn’t cut Emit out:

download one from Xamarin
or bake your own

https://devblogs.microsoft.com/xamarin/introducing-xamarin-ios-interpreter/

useful resources

Interpreter blog posts

iOS App Architecture
Hot Reloading iOS "Device-Only" features with the new Mono Interpreter
Interpreter source (for the brave, or if you want to follow the history)

Xamarin iOS/macOS gitter

https://devblogs.microsoft.com/xamarin/introducing-xamarin-ios-interpreter/
https://www.mono-project.com/news/2017/11/13/mono-interpreter/
https://docs.microsoft.com/en-us/xamarin/ios/internals/architecture
https://ryandavis.io/hot-reloading-device-only-features-with-the-new-mono-interpreter/
https://github.com/mono/mono/tree/master/mono/mini
https://gitter.im/xamarin/xamarin-macios

questions

