
Practical Uses for the Mono Interpreter

RYAN DAVIS

Queensland C# Mobile Developers Meetup

2019 05 28



• Ryan Davis 

• Professional Mobile LINQPad Developer

• essential-interfaces – use DI/mocking with Xamarin.Essentials

• dumpeditable-linqpad – extensible inline object editor for LINQPad

• jsondatacontext-linqpad – json data context driver for LINQPad

• sockets-for-pcl, sockethelpers – socket comms in a PCL 
(today you should use netstandard sockets why are you all still installing this)

whoami

ryandavis.io rdavis_au

rdavisau



what is the mono interpreter

 practical uses 

 samples and demos

 resources

to cover



what is it?

-= practical uses for the mono interpreter=-



Putting .NET on iOS posed a major challenge…

Apple explicitly forbids the use of runtime code generation and execution.

NET apps are traditionally executed using JIT compilation – a form of codegen.

C# / F# 
Source 

.NET IL Machine Code
compile

MyApp.exe

.NET IL

MyApp.exe

JIT compile

The CPU can 
execute this

Build time Run time

Life of a an typical .NET app

Not executable 
by the CPU

Traditional .NET apps are compiled to assemblies containing 

intermediate, platform independent bytecode – MSIL. 

At runtime, method implementations are compiled to 

machine code ‘Just in Time’ into a form executable by the 

CPU which makes Apple angrywhich makes Apple angry



compile

..but Xamarin had an answer!

Machine Code
(arm64)

Xamarin developed an AOT compiler to allow .NET applications to run on iOS.

The AOT compiler turns IL into architecture-specific machine code at build time.

C# / F# 
Source 

.NET IL

MyApp.exe

After compiling source to IL, the IL is AOT’d for as many 

target platforms as need to be supported

Build time

At runtime, Xamarin.iOS picks 

the AOT data from the bundle 

that matches the running CPU. 

Run time

Machine Code
(armv7)

Life of a Xamarin.iOS app

Apple is happy.



AOT has many benefits, but also drawbacks

✓AOT’ing enables Xamarin.iOS
✓ an AOT’d application (generally) outperforms the same app JIT’ed at runtime

✓ certain errors surface during compilation that would otherwise occur at JIT time

However:

x AOT’ing produces larger binaries

x AOT’ing involves longer build times 

x “AOT only” execution essentially prohibits dynamic execution, which causes 

challenges for various kinds of development and use cases in .NET



enter the revived Mono Interpreter

Updated interpreter: enables the ‘execution’ of .NET IL without code generation

Mixed-AOT mode: enables combined execution of AOT’d code and interpreted IL

In practice:

 Enables use of APIs like Assembly.Load and advanced techniques using the dynamic keyword

 Enables code generation using methods like Reflection.Emit

A new runtime option that enables dynamic execution opportunities and 

size/performance tradeoffs for Xamarin.iOS, whilst remaining within the 

restrictions imposed by Apple and the iOS runtime.



recently announced preview for Xamarin.iOS

Mixed-mode + interp announced for 
Xamarin.iOS in March 2019, 

hiding in builds for months prior

Interpreter updated late 2017 Has its roots in a 
2001 relic!



major effort 

There are probably more contributors than this

Miguel’s comment on some of the rationale behind the revival



the interpreter affords us dynamic execution

In general, an interpreter produces an execution-like result from non-machine 

executable input eg:

 Source code of a programming language (javascript, python)

Machine code of a different architecture (emulating a Gameboy cpu)

So, we can use the mono interpreter to process IL instead of JIT’ing it - giving us 

‘execution’ of dynamic code without executing it.

Interpreted IL is significantly slower than AOT’d code.

Thanks to mixed-mode execution, we can use switch between 

AOT’ing and interpreting where it makes sense.



but --interpreter is currently ios device only

Ha ha I can use

--interpreter 

and u cant 

Ha ha I can use

--interpreter 

and u cant 

Ha ha I can use

--interpreter 

and u cant 

Ok cool but we have been 
able to use Assembly.Load

and Reflection.Emit the 
whole time fam

The iOS device target has the most to gain from an interpreter, given the iOS 

simulator and android devices/emulators all support JIT compilation. 

Our practical uses therefore fall into two categories:

- Improvements to development time experience for device specific features

- Fundamentally new opportunities for release capabilities



how 2

Add –-interpreter to your `mtouch` args

Without arguments, –-interpreter actually expands to something like this:

Meaning, “interpret everything except mscorlib, and enable mixed execution”

With this set of flags, any time an assembly with IL and no AOT data is encountered, 

the runtime will fall back to the interpreter to execute it.



how 2 actually



Inner-loop development speed

-= practical uses for the mono interpreter=-



default interpreter options disable AOT

C# / F# 
Source 

.NET IL Machine Code

App Bundle

Add --interpreter to your debug configuration to save time and energy!

mono compile mono aot

create
bundle

C# / F# 
Source 

.NET IL
mono compile

App Bundle

create bundle

--interpreter debug build

Ordinary AOT debug build

take a nap

at least it’s just one 
arch this time



skipping the AOT step improves compile times

* Performed while at least one twitch stream was playing, a zillion chrome tabs were open, Parallels VM was on and I was also runningSlack 

52

70

139

30
25

61

0

30

60

90

120

Hanselman.Forms AR Bound Unnamed App X

D
e

b
u

g
 b

u
il
d

 t
im

e
 (

s)

30
19

56

20

7

38

0

30

60

90

120

Hanselman.Forms AR Bound Unnamed App X

D
e

b
u

g
 b

u
il
d

 t
im

e
 (

s)

Highly Unscientific But Possibly Real World Representative* Comparison of Build 

Times between AOT and non-AOT (--interpreter) iOS Debug Device Builds
(lower is better)

Full build Incremental build after small change 



Look ma, no aotdata!

Ordinary AOT build --interpreter build



Inner loop development – practical use?

Lots of benefits, only minor drawbacks:

 Lower performance than AOT’d (debug builds don’t represent real performance anyway)

May encounter a bug in the interpreter (but then you’ll report it and be helping the world)

✔️



inner loop development – tips 

 Handle bugs or performance sensitive code by selectively AOT’ing assemblies:

 --interpreter=-AssemblyToAOT will cause the assembly to be AOT’d, not interpreted

 To verify that the right parts are/aren’t being interpreted, inspect the app bundle:

no aot data, these will be 
interpreted at run time

XF.Core was AOT’d

Request that Xamarin.Forms.Core is not interpreted

ARKitMeetup



🔥🔥🔥🔥🔥

Hot reload 

-= practical uses for the mono interpreter=-

(of device-only features)

https://emojipedia.org/fire/


device features are the most painful to debug

 alternating between typing on the pc and working with the device

work that requires movement, being away from the pc etc (e.g. ARKit)

work that requires fiddling and lacks tooling (e.g. ARKit)

 longer deploy times (even with --interpreter)

 hot reload is the hero we need



device features are things like

ARKit
Metal

SpriteKit*

SceneKit*

Camera

Barcode

Push Notifications

* these do work on the simulator but with unusable performance



damn right u can use continuous demo
hot reload

Simulator performance vs device performance 

OpenGLES
Hot reloading ARKit



hot reload – practical use?

Lots of benefits, some drawbacks:

no endorsed hot reload solutions

hot reload + interpreter is an additional level of complication over 

interpreter alone – some bugs exist in this combination that don’t exist in 

normal use

✔️



hot reload - tips

 tailor your hot reload setup to the task at hand

 consider what state should survive between changes e.g.:

UI – none or viewmodel state

2D AR – AR view but not AR state

3D AR – AR view and AR state



🔥🔥🔥🔥🔥

Hot patching 

-= practical uses for the mono interpreter=-

https://emojipedia.org/fire/


releasing on ios can be scary 

 Apple review basically guarantees at least 8 hours of lead time for any 

release/fix

 Apple scrutiny is very inconsistent

 Maybe it would be nice to patch our app outside of the normal release 

process

 Maybe it wouldn’t? 



i execute, therefore i patch

Transparent hot patching would need lots of runtime magic that doesn’t (yet?) exist

We can roll our own w/Assembly.Load, but our app must ‘expect’ to be patched

Fortunately, .NET tends towards abstraction and loose-coupling:

Code not tied to specific implementations,
easy to replace with hot patch

Dynamic menu contents, easy to augment with hot patch

Navigator calls not coupled to view 

or viewmodel implementations



roll your own hotpatch in 3 easy steps

1. detect and download hot patch if available

 simplest case: .dll, complicated case: bundle with dlls, assets, etc.

 can do in the background to keep checks off the startup path

2. load patch contents at every startup (volatile patching)

3. integrate patch content at appropriate points, for example:

 add/override or intercept service registration

 add/replace navigator references

 any other hard coded patch handling



home grown hot patching – demo (ar bound)

Convention in patch loader – “Prefer a patched 

HomeViewController over the compiled one”
Since menu contents are generated dynamically, just loading the 

hot patch is enough to add new demos to it

+ =

New tag

New demos

New bg



home grown hot patching – demo (prism)

Create dedicated patching implementations for different types of 

patch content

Register new services, pages and viewmodels

in the standard Prism manner



hot patching – practical use? the good

 Changes can be deployed and integrated extremely quickly, various options 

available to keep startup impact low

 Using mixed-AOT allows everything originally shipped to be AOT’d and only the 

incoming patch contents to be interpreted, minimal performance impact

 Hot patching as a concept is blessed by Apple, and “proven” by React Native



hot patching – practical use? the bad

 Increases versioning complications

Can fragment userbase – clients who do/don’t have hot patches

 If patches cause side effects, user state is no longer easy to reason about

 Patching significant changes is a great way to see how effective the linker is 💥

 Certain classes of errors might be uncatchable and unrecoverable, or present 

in sections of the app without error handling

 Allowing execution of code from a remote source has many security concerns.

https://emojipedia.org/collision-symbol/


hot patching – tips

 Use --interpreter=-all to ensure all original code is AOT’d, and disable removal 

of the dynamic registrar if your patch will include types deriving from native types 

 Try this at home, or maybe with QA builds, not in production

 Feature flag it, include a rollback/unpatch allowance, don’t @ me 

A reasonable set of hot-patch friendly mtouch arguments



Embedded repl

-= practical uses for the mono interpreter=-



sometimes you want to code inside your app*

 device related features like AR can be fiddly and highly state-dependant

 you can persist state when hot reloading, but complicated preservation usually 

pollutes code

 sometimes you’re not at your PC when you want to fiddle programmatically 

with your app?

 dynamically executing code within the context of the running app has its uses, 

probably

*citation needed



a repl is possible w/the evaluator + interpreter

 the mono interpreter is an IL interpreter, but we’d prefer not to write IL

 we can approximate a c# repl by using the mono evaluator to generate IL 

from c#, which the interpreter then executes

Compile to IL using 

Mono Evaluator

Write C# source “Execute” IL via 

interpreter



embedded repl – demo 

Evaluate C# at runtime 

on the device 
Interact with running 

application from REPL



embedded repl – demo 

Send code to be remotely evaluated 



embedded repl, remote-eval – practical use? 

 this was meant to be the meme use for the interpreter but it was actually kind 

of cool

 generalising to the ideas of arbitrary and remote execution there are a lot of 

practical uses

 the same security considerations that apply to hot patching apply here if you 

want to use it in production



embedded repl – tips 

 use an updated version of Mono.CSharp.dll from your Xamarin install, not the 

one on NuGet. It has all the MCS features and fixes that have been 

implemented since 2015.

Old busted New shiny!



wrapping up

-= practical uses for the mono interpreter=-



how to start your interpreter adventures

Although the feature itself is in preview, any 

recent stable Xamarin.iOS build supports 
the --interpreter flag

For code generation 
(System.Reflection.Emit) you need a 

Xamarin.iOS build on top of a mono runtime 

that doesn’t cut Emit out:

 download one from Xamarin here

 or bake your own

Easy Mode – Interpreter only 

#1 Inner loop dev speed #3 Hot patching

Hard Mode – Interpreter + Code Gen

#2 Hot Reload #4 Embedded REPL

https://devblogs.microsoft.com/xamarin/introducing-xamarin-ios-interpreter/


useful resources

• Interpreter blog posts
https://devblogs.microsoft.com/xamarin/introducing-xamarin-ios-interpreter/

https://www.mono-project.com/news/2017/11/13/mono-interpreter/

• iOS App Architecture
https://docs.microsoft.com/en-us/xamarin/ios/internals/architecture

• Hot Reloading iOS "Device-Only" features with the new Mono Interpreter
https://ryandavis.io/hot-reloading-device-only-features-with-the-new-mono-interpreter/

• Interpreter source (for the brave, or if you want to follow the history)
https://github.com/mono/mono/tree/master/mono/mini

• Xamarin iOS/macOS gitter
https://gitter.im/xamarin/xamarin-macios

https://devblogs.microsoft.com/xamarin/introducing-xamarin-ios-interpreter/
https://www.mono-project.com/news/2017/11/13/mono-interpreter/
https://docs.microsoft.com/en-us/xamarin/ios/internals/architecture
https://ryandavis.io/hot-reloading-device-only-features-with-the-new-mono-interpreter/
https://github.com/mono/mono/tree/master/mono/mini
https://gitter.im/xamarin/xamarin-macios


questions


