
How Not to Translate a Videogame

RYAN DAVIS

Brisbane Azure User Group

2019 03 13

(using Azure)

• Ryan Davis

• Professional Mobile LINQPad Developer

• essential-interfaces – use DI/mocking with Xamarin.Essentials

• jsondatacontext-linqpad – json data context driver for LINQPad

• sockets-for-pcl, sockethelpers – socket comms in a PCL
(today you should use netstandard sockets why are you all still installing this)

whoami

ryandavis.io

rdavis_au

rdavisau

why i wanted to translate a videogame

 building a basic real-time translator

 improving translations with custom translator

meeting our azure/buzzword quota

 resources

to cover

why

-= how not to translate a videogame =-

i wanted to play another game like this one

Nine Hours, Nine Persons, Nine Doors
2009, Spike Chunsoft / Aksys

• “Visual Novel” – like a choose your own adventure

book with graphics, music and sound

• Multiple routes and endings

• Sci-fi, supernatural themes, crazy twists

the infinity series

Ever17
(KID / 5PB, 2002)

Never7
(KID, 2000)

Remember11
(KID, 2004)

12Riven
(KID/CyberFront, 2009)

The internet recommended Ever17, the second game in the ‘Infinity’ series.

I decided I’d play the whole series, but tragically…

Fan TranslatedFan Translated Officially Translated Never Translated

 Extract the script from the game data files

 Have someone fluent in the source and target

languages translate the script:

 Account for puns

 Account for cultural references and jokes

 Employ a consistent tone

 Re-insert the translated script into the game

 Patch aspects of the game that made

assumptions about the language

 Fixed width font

 Hardcoded character limits / timing assumptions

how to translate a video game

* See the mother3 fan translation blog (link in resources) for just how crazy patching in a translation can be.

building a basic translator

-= how not to translate a videogame =-

our approach

PPSSPP

Emulate the game

LINQPad / C#

Capture frames, “Detect” text

Azure Computer Vision OCR API

Recognise characters
迷いはなかった。ただ盲目的にそこに記された内容を信じていた。

Azure Text Translate API

Translate text

I didn't have any hesitation.
I just blindly believed in what was written there.

extracting the text

We can use simple, targeted techniques to effectively identify text-containing parts of the screen.

“Adventure Mode”

“Story Mode”
(not implemented)

Find top-most, bottom-most, left-most and right-most white pixels within the
known boundaries of the message dialog.

left-most top-most

right-mostbottom-most

Capture ‘textless’ screen and diff subsequent frames to determine
the location of text using the boundaries of the changed area

In both cases we need to detect when text has finished ‘typing out’ before requesting OCR.

unchanged area – does not contain text

changed area – contains text

extracting the text – demo

extracting the text – improvements

 Improve processing speed

 Use unmanaged bitmap access

 Reduce time to detect stabilisation

 Make message dialogue window opaque

 Mask out ‘cursor’ when detecting changes between frames

recognising the characters – options

Azure currently has two classes of OCR services available for character recognition tasks:

New Shiny

• Based on ‘Updated recognition models’

• Asynchronous APIs

• Still in preview

• English only (currently)

“Read” API

“Recognise Text” API

Old Busted

• Uses an ‘earlier recognition model’

• Synchronous API

• Supports 25 languages and automatic

language detection.

“OCR” API

Given we need to recognise Japanese text, we’ll use the OCR API.

✔️

recognising the characters – OCR API

 Recognises text in 25 languages

 Supports orientation and rotation detection

 Detects multiple regions of text if present

 Returns comprehensive information about the

position and size of detected characters

POST
api.cognitive.microsoft.com/vision/v1.0/ocr

{ "language":"ja",
"textAngle":0.0, "orientation":"Up",
"regions":[

{ "boundingBox":"8,6,772,51",
"lines":[

{ "boundingBox":"8,6,772,51",
"words":[

{
"boundingBox":"8,10,47,43",

"text":"い"
},
{

"boundingBox":"62,7,45,48",

"text":"き"
}, … etc.

Key Features

Pricing

Sample Request

Sample Response

recognising the characters – demo

recognising the characters – improvements

 Use “Recognise Text” / “Read” API once out of preview
 Use Google OCR instead

translating the text – text translate API

 Supports 64 languages and automatic language detection

 Multi input and output translation and transliteration

 Profanity marking and/or filtering

 Translation of HTML/markup content

 v3 introduces Neural Machine Translation (NMT)
41 languages supported currently

Key Features

Sample Request / Response

POST
api.cognitive.microsofttranslator.com/translate?api-version=3.0&to=en

[

{

“Text“ : “とっさにブレーキを絞った”
}

]

[
{

"detectedLanguage":{ "language":“ja", "score":1.0 },
"translations":[

{
"text“ : "I squeezed the brakes momentarily",
"to“ : “en"

}
]

}
]

+S3, +S4

https://api.cognitive.microsofttranslator.com/translate?api-version=3.0&from=ja&to=en

translating the text – SMT vs NMT

Text Translate is moving from Statistical (SMT) to Neural (NMT) Machine Translation techniques.

Both techniques do not translate individual words, rather words in a broader context.

Statistical Machine Translation Neural Machine Translation

 Standard technique used by machine translation

providers for the last 10 years

 Uses advanced statistical techniques and large

reference bodies of human-translated sentences

to determine the likely best translation of a word,

given words around it

 Limited context (3 – 5 surrounding words)

 Accuracy / performance has plateaued in the last

decade.

 Utilises advances in ML and deep learning

techniques over the last few years

 Defines words as a feature vector of 500 concepts,

specific to source/target language pair

 Encodes inputs as a 1,000 dimension vector
(500 features representing the word + 500 representing its position in

relation to words in the sentence - refined over several layers)

 Final vector used to select best translation from

reference set, and next word to process

 Allows much broader context of surrounding words

to inform the translation.

translating the text – demo

translating the text – improvements

 Use Google translate instead

 Use the includeAlignment and includeSentenceLength parameters to increase the amount of

context provided to the translation algorithm.

 Train a custom model using Azure Custom Translator

building a custom translator

-= how not to translate a videogame =-

why custom translate?

 Azure Text Translate models are trained and tested over a huge range of translation data

and are optimised to perform well in the general case

 Many domains involve biases not reflected by or even trained on by the general case

 Azure provides a service that allows us to create a specialised translation model that

includes domain bias – Custom Translator

 Maybe 12Riven still could be playable…

custom translator

 Train and deploy models based on translations you that you provide

 Easy to use online portal with workspace sharing/collaboration options

+ an API that exposes upload, training and deployment

 Automatically performs ‘alignment’ on provided translations

 Provides a mechanism for you to assess the lift in domain relevance that

your trained models provide (BLEU score)

 Supercedes the SMT-based Microsoft Translator Hub product

Key Features

ja
en

ja
en

ja
en

upload translation pairs train and assess model deploy model consume

+C3, +C4

sourcing translated content

 Custom translate requires at least 10,000

source -> target translation pairs

 Fortunately, the raw fan translation of Remember11

(3rd game in the series) was left on tlwiki.org - perfect

 Many similarities in concepts between both games

 Same author wrote both scripts

 This could be good

 Unfortunately, tlwiki.org went down sometime last

year and never came back up

 Fortunately, I first had the idea to try this a year or two

back and had already scraped the site, I found the

working files on an old laptop.

preparing translated content

 R11 fan translation separated into chapters -> scenes -> text boxes - approx 36K pairs

 Contains noise and control codes, but is already aligned due to the nature of the game

 Straightforward to transform this into a format that that Custom Translate can use.

creating a custom translation project

 Custom models are hosted within a “Project”, which is

linked to an Azure subscription. Custom translator exists

outside the Azure portal at customtranslator.ai

 Projects target a single source/target language pair

 Projects specify a base category, which may influence

the behaviour of the model
(currently only the “Technology” category is modelled differently)

 Projects can be shared between multiple users

customtranslator.ai

uploading reference documents

 Uploading documents via the portal is intuitive enough for ordinary users to perform

The portal displays a summary of uploaded
document/document pairs and their contents.

Users can upload parallel documents or
aligned documents in various formats.

You can explicitly specify whether
to use a document for training,
testing or tuning.

If not, custom translator will
automatically withhold portions of
training documents for testing and
tuning purposes.

You can upload parallel documents
for custom translator to align.

Or, you can upload a single,
pre-aligned document.

training a custom model

 A model can be trained on all or a subset of uploaded documents, and takes minutes

 Trained models include a BLEU score, giving a quantifiable/comparable indication of lift

 It’s possible to view the outputs of the model against sentences in the test set

 Evaluating model effectiveness is important because deploying incurs immediate cost

Select documents to train

View BLEU lift

View outputs against the test set

deploying a custom model

 A trained model can be deployed with one click:

 Once deployed, a custom model can be used via the standard Text Translate API, by

providing the appropriate categoryId as a query parameter:

This button costs
$13.73 per click

POST
api.cognitive.microsofttranslator.com/translate?categoryId=08b1f19-xxxx-xxxx-xxxx-xxxxxxxxxxxx-ARTSENT

https://api.cognitive.microsofttranslator.com/translate?api-version=3.0&from=ja&to=en

custom translator – demo

custom translator – improvements

 Review scraped scripts for additional control characters or other errors

 Add scripts from additional translations?

adding more azure

-= how not to translate a videogame =-

the problem

 We have only included 3 Azure services

 Not enough buzz words

 No time to add blockchain

 Can we add something else?

‘improving’ the experience

 Currently we need to look at the LINQPad window to view translated content - lame

 Lets use Azure Hosted SignalR, Azure App Service, Xamarin.iOS and ARKit to make this

even more stupid more user friendly

‘improved’ solution design

PPSSPP

Emulate the game

LINQPad / C#

Capture frames,
“Detect” text

Azure Computer Vision

OCR API

Recognise characters

迷いはなかった。ただ盲目的にそこに記された内容を信じていた。

Azure Text Translate API

Translate text

I didn't have any hesitation.

I just blindly believed in what was written there.

Hosted SignalR
Shuffle bytes

Xamarin iOS

+ ARKit
Augment Reality

Untranslated images

Translated text

‘improved’ solution design

 The LINQPad translator script will forward untranslated images to the app via SignalR,

which the app will use as AR Reference Images to detect the untranslated content

 When the app detects the untranslated text in 3D space, it will place a virtual message

box over the real one

 When the app receives a translation, it will draw that onto the message box

The SignalR hub really is just shuffling bytes,
but it also gives us multiplayer support for free

‘improving’ the experience – demo

wrapping up

-= how not to translate a videogame =-

 Extract the script from the game data files

ahead of time

 Have someone fluent in the source and

target languages translate the script:

 Account for puns

 Account for cultural references and jokes

 Employ a consistent tone

 Re-insert the translated script into the

game

how not to translate a video game

 Scrape game screen to detect and

OCR text in realtime

 Use a machine translation service to

translate the script

 No awareness or accounting for puns

 No awareness of references/jokes

 Can robots feel?

 Display the text in a separate window

in 3D space using AR

How Not to Translate a Videogame

RYAN DAVIS

Brisbane Azure User Group

2019 03 13

(using LINQPad, Azure OCR, Azure Text Translate, Azure Custom Translator, Azure Hosted SignalR, Azure App Service, Xamarin iOS and ARKit)

resources

• Azure OCR

https://docs.microsoft.com/en-us/azure/cognitive-services/Computer-vision/concept-recognizing-text

• Azure Text Translate

https://azure.microsoft.com/en-us/services/cognitive-services/translator-text-api/

• Azure Custom Translate

https://customtranslator.ai

• Azure Hosted SignalR

https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview

• Xamarin/ARKit

https://docs.microsoft.com/en-us/xamarin/ios/platform/introduction-to-ios12/arkit2

• Infinity Series

https://en.wikipedia.org/wiki/Infinity_(video_game_series)

• Mother 3 Fan Translation Notes (start from the bottom)

http://mother3.fobby.net/blog/previews/archives/

https://docs.microsoft.com/en-us/azure/cognitive-services/Computer-vision/concept-recognizing-text
https://azure.microsoft.com/en-us/services/cognitive-services/translator-text-api/
https://customtranslator.ai/
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://docs.microsoft.com/en-us/xamarin/ios/platform/introduction-to-ios12/arkit2
https://en.wikipedia.org/wiki/Infinity_(video_game_series)
http://mother3.fobby.net/blog/previews/archives/

questions / comments

