
Introduction to ARKit

RYAN DAVIS

Queensland C# Mobile Developers Meetup

2018 11 27

(with Xamarin)

• Ryan Davis

• Professional Mobile LINQPad Developer

• essential-interfaces – use DI/mocking with Xamarin.Essentials

• jsondatacontext-linqpad – json data context driver for LINQPad

• sockets-for-pcl, sockethelpers – socket comms in a PCL
(today you should use netstandard sockets why are you all still installing this)

whoami

ryandavis.io

rdavis_au

rdavisau

 AR in very brief, overview of ARKit

Walk through the framework features

 Samples / demos

 Resources

to cover

what is it?

-= introduction to arkit =-

augmented reality?

Videos from @madewitharkit

In Short: the convincing integration of virtual content into a real world space.

a high performance AR framework for iOS

“ARKit provides a platform for developing (AR) apps for iPhone and iPad,

with sophisticated positional tracking and scene understanding.”
(developer.apple.com, with most marketing fluff removed)

 iOS devices with A9 processor or better (most devices since iPhone 6S)

 iOS11+ for ARKit 1.0, iOS12+ for ARKit 2.0

World Tracking Scene Understanding Rendering
(hooks)

a laundry list of features for you to choose from

 World Tracking: use of “Visual Inertial Odometry” to correlate device movement and video input to

precisely determine your position

 Scene Understanding: continuous interpretation of inputs to manage a world map while running

 Topology: detecting planes (surfaces) and features

 Objects: detecting 2D images or 3D objects in the real world

 Light: detection of real-world lighting to influence brightness and rendering of virtual objects

 Interaction:

 Hit-testing: allowing for interaction with 3D scene (real world) via 2D interface (your screen)

 Persistence:

 Serialise a world map (including virtual additions) and deserialise it later

 Send a world map to other devices for shared experience

combine with frameworks for rich experiences

iOS:

 SceneKit: apply physics to virtual objects, animate, style and orchestrate scene contents

 Vision framework: detect objects, landmarks, text, barcodes/QR codes from frames captured by AR

 CoreLocation, Beacons: augment content based on location of user or proximity to beacons

 AV: Overlay audio and video in your virtual scene

Xamarin/Microsoft:

 SignalR: realtime integration

 Xamarin Forms: EZ PZ UI

 Cognitive Services: Machine Learning, Artificial Intelligence

the framework

-= introduction to arkit =-

arkit+scenekit framework class structure (abridged)

Tracking Configurations Node Geometries

Tracking Anchors Scene/Node Hierarchy

Node Actions

LegendARKit Core

ARSession

 ARKit is session based, and can be controlled
using the ARSession class

 You begin an ARSession using the Run

method, passing an ARConfiguration

 Once running, there are two primary ways to

access session data:

 Provide an ARSessionDelegate and

implement OnUpdate to perform processing on

every frame

 At any time (e.g. in response to user input)
access the CurrentFrame property of the
ARSession

 Xamarin mantra for health and happiness:
“Touch an ARFrame, Dispose an ARFrame”

Supported ARConfigurations

Informs of important events

Contains AR information

for a single frame

Contains AR information and

functionality for a detected real

world feature

Controls how an ARSession

runs and what is detected

Core AR Class responsibilities

ARSession continued

 You can and should modify your session config while running to enable/disable features as
needed. Calling Start again with an updated ARConfiguration while running will cause ARKit

to use the new settings

 e.g. disable surface detection once you have identified

the ones you need – save battery and processing

 e.g. swap out a set of reference images for another set

during image detection based on the kind of activity

the user is performing – reduce processing requirements

 When AR tracking is interrupted, ARKit will call
WasInterrupted on its ARSessionDelegate.

If your app is sensitive to breaks in tracking, you can

use this notice to reset the worldmap completely.

World Tracking

 World Tracking is configured by ARWorldTrackingConfiguration and using the magic of Visual Inertial

Odometry gives you 6DOF positioning. Key configuration items:

 PlaneDetection – Whether to detect surfaces that are horizontal, vertical, both or none

 WorldAlignment – How co-ordinates will be determined/specified

 When running in world tracking mode:

 ARKit will continuously monitor your position/heading based on device and video input

 ARKit will detect features and surfaces according to configuration, and notify its delegate for key events

 ARKit will let you know if it is unable to accurately track and why

 World Tracking mantra for health and happiness: “ARKit in the dark would be boring anyway”

Accuracy suffers in poor lighting and when the video input contains mostly plain surfaces

Gravity
Y axis is up and down

X axis is left and right from origin

Z axis is forward and back from origin

Gravity + Heading
Y axis is up and down

X axis is east and west

Z axis is north and south

Camera
The camera transform (position and

rotation) is considered to be the

origin at all times.

Demo – World Tracking

 Basic setup of an ARKit session

 Observe how ARKit tracks us in an otherwise empty scene

Tips – World Tracking

 AR Presentation mantra for health and happiness:

“Always brush up on your 3D/Matrix math, if you can”

ARKit vs Renderers (SceneKit) vs Developer

 ARKit does not handle any virtual content – this is the responsibility of a renderer

 Features detected by ARKit are used automatically by the renderer:

 As ARKit tracks your transform from origin, SceneKit adjusts the camera accordingly -

ARSCNView.PointOfView property

 As ARKit tracks lighting, SceneKit controls scene illumination

 Features detected by ARKit are used by you, the developer

 Use surfaces detected by ARKit to constrain or orient your simulation

 Use local co-ordinate systems of detected features to simplify positioning of virtual content

Virtual Content in SceneKit

 An SCNScene is the root of a ‘world’ and is viewed by

an SCNCamera. When using ARSCNView, SceneKit uses

AR inputs to control the camera

 An SCNScene RootNode is a hierarchy of SCNNodes,

 A SCNNode has an name and a transform in 3D-space

 A SCNNode may contain child SCNNodes

 All child nodes are positioned relative to parent

 An SCNNode can contain components with behaviour

 SCNGeometry – allows node to be rendered

 SCNPhysicsBody – allows node to participate in physics

 SCNAudioPlayer – allows the node to emit audio

 SCNLight – allows the node to emit light

Virtual Content Rendering

 SceneKit has built in 3D shape primitives, or you can specify/load your own models

 Four lighting models of varying complexity, including Physical-Based Rendering (PBR)

 Sophisticated material subsystem that can be applied to get highly realistic results

diffuse normal occlusion

self-illumination displacement metalness roughness

emission

+ + +

+++

=

Super realistic looking globe
floating in the spare room

Virtual Content Logic

 Run an SCNAction on an SCNNode to declaratively specify behaviour and timing

 Many actions included in the framework, or you can define your own

• Translation: .MoveTo/By, .RotateTo/By, .ScaleTo/By

• Appearance: .FadeTo/By, .Hide/Unhide

• Audio: .PlayAudio

• Control: .Sequence, .Group, .Repeat, .Delay

• Abitrary: .RunAction(n =>)

 Control/Arbitrary actions allow you to compose complex behaviours

 You can perfom logic on a per-frame basis at the scene level

 ARSCNViewDelegate calls Update and gives you the time since the last call

 Using async adds another dimension to logic, simplifying otherwise complex scenarios.

Demo – Virtual Content

 Load a SceneKit scene straight in, ~no code~

 Use SceneKit assets as ‘prefabs’

 Use SCNActions to animate virtual content in the 3D world

 Try and fail to place virtual objects realistically

Tips – Virtual Content

 AR Presentation mantra for health and happiness:

“Always brush up on your 3D/Matrix math, if you can”

 Add objects as children of anchor nodes rather than the root node when it’s

easier to think in those terms

 Cloning nodes is super useful but note that clones share geometry/materials –

so copy these individually if you want to modify a clone independently.

Plane Detection

 Convincingly placing virtual content in your AR world is aided by an

understanding of physical surfaces that are present

 As of v1.5, ARKit detects both horizontal and vertical surfaces

 As plane detection runs, ARKit progressively builds up a world map and

notifies you as its understanding increases using delegate callbacks:

 OnNodeAddedForAnchor – new plane detected

 OnNodeUpdatedForAnchor – understanding of existing plane improved

 OnNodeRemovedForAnchor – existing plane no longer valid

 Detected surfaces are exposed to you as ARPlaneAnchor instances,

providing information such as orientation and extents, and SceneKit
provides a corresponding (invisible) SCNNode

AR Hit Testing

 ARKit provides support for hit testing real world features, exposed by
the ARFrame.HitTest(CGPoint, ARHitTestResultType)

 Hit Testing mantra for health and happiness:
“ARKit hit tests using normalised co-ordinates (0.0-1.0),

SceneKit hit tests using view co-ordinates”

 In my test scenes, performance seems to be good enough to hit test

on every AR frame, YMMV

 ARKit can hit test against:

 Detected plane bounds or geometry

 Raw features

 Hit testing surfaces can be a good way to request input from the user

(e.g. ask the user point to the surface you want to focus on, highlight

the surface matching the hit test)

Demo – Plane Detection

 Detect horizontal and vertical planes

 Use hit testing to detect when the user points at detected planes

 Use planes to help place virtual content more realistically

(but still fail kind of because I’m bad at math)

Tips – Plane Detection

 AR Presentation mantra for health and happiness:

“Always brush up on your 3D/Matrix math, if you can”

 Encourage users to work under optimal conditions (good lighting, etc)

 Turn off plane detection once you have the surfaces you need

 reduces processing time and battery drain,

 more stable experience for users

 Use debug features, but sparingly

(the internet says accuracy is worse while they’re on)

Image Detection

 ARKit can detect of images by comparing input to a set of ARReferenceImages that you provide

 Similar to plane detection, ARKit provides an ARImageAnchor when a reference image is detected

 ARKit also supports image tracking, which allows you to keep track of the movement of a detected

image in 3D space.

Image Detection
Recognised currency and provided

additional information about it.

Image Tracking
Recognised business card and overlaid addition content to

the right of it. As the business card or camera changes
position, the additional content remains anchored to the

business card.

Demo – Image Detection

 Detect reference images and place virtual content when we do

 Use SceneKit hit testing to detect when the user is pointing at the new content

Tips – Image Detection

 ARKit2 has a dedicated ARImageTrackingConfiguration configuration type

that can be used for image detection if you don’t need full world tracking powers –
more efficient on battery life

Face-based AR

 ARKit provides special features for performing face-oriented AR,
initiated by using an ARFaceTrackingConfiguration:

 Face detection

 Face tracking

 Expression tracking

 ARKit provides ARFaceAnchor s when a face is detected, which

includes the detected geometry.

 ARFaceAnchors also include a BlendShapes property, which

specifies the intensity of various aspects of face expression.

Detected face meshes are cool but

kinda creepy if you display them raw

It’s up to the developer to interpret the
readings provided by BlendShapes

Demo – Face AR

 Detect a face

 Track a face

 Identify expressions

wrapping up

-= introduction to arkit =-

quick start ur Xamarin arkit+scenekit app

 Add Camera Usage reason and arkit device requirement to Info.plist

 Add an ARSCNView to a UIViewController’s root view

 Configure the appropriate ARSessionConfiguration for the kind of

AR you want to perform

 E.g. for ARWorldTrackingConfiguration, specify your world

alignment and whether you are interested in horizontal and/or vertical

plane detection

 E.g. For ARImageTrackingConfiguration, specify the reference

images that should be detected

 Perform any SceneKit setup on your SCNView’s Scene.

 When ready, call Run(config) on your SCNView’s Session to begin

AR tracking.

 Respond to user input or callbacks raised by ARSCNViewDelegate and
ARSessionDelegate

Prevent immediate crashes

with this one crazy tip!

This ARKit session will continuously,

automatically detect and track

horizontal surfaces

You can receive callbacks for every AR

frame received, or respond to specific

events (e.g. plane detected/updated)

remember your mantras

 Xamarin mantra for health and happiness:
“Touch an ARFrame, Dispose an ARFrame”

 World Tracking mantra for health and happiness:

“AR in the dark would be boring anyway”

 AR Presentation mantra for health and happiness:

“Always brush up on your 3D/Matrix math, if you can”

 Hit Testing mantra for health and happiness:

“ARKit hit tests using normalised coordinates (0.0-1.0),

SceneKit hit tests using view coordinates”

arkit things I didn’t cover

• 3D Object Detection
Similar to the image detection demonstrated, it’s possible to use ARKit to detect 3D objects in the real world based off reference
models. Unlike 2D images, these cannot (currently?) be tracked

• Scene Persistence
As of ARKit 2, it’s possible to serialise AR session state – both the internal worldmap maintained by ARKIt and your virtual additions –
and then restore it later

• Multipeer/Shared Experience
As of ARKit 2, it’s possible to initiate a shared AR session where multiple users can participate in a single virtual scene.

• Probably a few other things..

useful resources

• Larry O’Brien’s Xamarin/ARKit blog posts
https://blog.xamarin.com/augment-reality-xamarin-ios-11/

https://blog.xamarin.com/exploring-new-ios-12-arkit-capabilities-with-xamarin/

• Microsoft ARKit Docs
https://docs.microsoft.com/en-us/xamarin/ios/platform/introduction-to-ios11/arkit/
https://docs.microsoft.com/en-us/xamarin/ios/platform/introduction-to-ios12/arkit2

• Ray Wenderlich ARKit Articles, and “ARKit2 By Tutorials” (~$40AUD)

(these are all Swift-based but easy enough to apply)

https://www.raywenderlich.com/library?domain_ids%5B%5D=1&q=arkit&sort_order=relevance
https://store.raywenderlich.com/products/arkit-by-tutorials

• #MadeWithARKit on Twitter
https://twitter.com/hashtag/madewitharkit?src=hash

https://blog.xamarin.com/augment-reality-xamarin-ios-11/
https://blog.xamarin.com/exploring-new-ios-12-arkit-capabilities-with-xamarin/
https://docs.microsoft.com/en-us/xamarin/ios/platform/introduction-to-ios11/arkit/
https://docs.microsoft.com/en-us/xamarin/ios/platform/introduction-to-ios12/arkit2
https://www.raywenderlich.com/library?domain_ids[]=1&q=arkit&sort_order=relevance
https://store.raywenderlich.com/products/arkit-by-tutorials
https://twitter.com/hashtag/madewitharkit?src=hash

questions / comments / concerns

