
Starting out right with Xamarin

RYAN DAVIS

QUEENSLAND C# MOBILE DEVELOPERS MEETUP

2018 09 25

and other useful tips, tricks and resources

p.s. still just my opinion

• Ryan Davis

• Professional Mobile LINQPad Developer

• Blog: ryandavis.io

• Twitter: @rdavis_au

• Github: @rdavisau

• essential-interfaces – use DI/mocking with Xamarin.Essentials

• jsondatacontext-linqpad – json data context driver for LINQPad

• sockets-for-pcl, sockethelpers – socket comms in a PCL
(today you should use netstandard sockets why are you all still installing this)

whoami

 File -> New

Mobile principles to live by

Pop Quiz – your first big questions

Spotlight on some useful libraries

Roundup of resources.

to cover

love thy neighbour
know platform

-= mobile principles to live by =-

Xamarin because:

✓Write code in powerful, expressive languages

✓ Take advantage of the .NET platform and ecosystem

✓ TARGET ALL THE PLATFORMS!!

✓ Share as much code as we can

✓ Avoid Java and Objective-C and swift

 Don’t want to learn about the native platforms.

why Xamarin, again?
(yeah this list isn’t really MECE)

Xamarin is not designed to relieve you of the need to understand

the underlying platform:

 Android, iOS and UWP differ on many levels – UI, app lifecycle, sandboxing

Each platform might be more or less suited to a task or paradigm

Xamarin.Forms abstracts some of these platform variations, some

of the time.

not all mobile platforms are created equal

Xamarin’s iOS/Android frameworks are C# idiomatic, but

otherwise near identical to native ObjC/Swift/Java counterparts

 A book or course targeting iOS or Android native is still relevant, especially for

frameworks like UIKit and CoreAnimation

 Tutorials and documentation are easily adapted

 The balance of swift – objc samples has tipped over the last couple of years

Probably the biggest deviation from native API naming:

fortunately, we can make use of native docs

- tableView:cellForRowAtIndexPath:
NATIVE iOS XAMARIN iOS

→ GetCell(,)

begin with the end in mind

-= mobile principles to live by =-

The components of MVVM map closely to the original code sharing

architecture in a Xamarin app, and the ecosystem has evolved around that.

Forms or otherwise, MVVM is a safe bet

From a Xamarin Presentation From a google image result for MVVM

P
o

rt
a

b
le

 C
la

ss
 L

ib
ra

ry

Native Project Native Project Native Project

Keeping your viewmodels in the core project and your views in

native projects* encourages Good Habits
TM

You cannot accidentally use platform-specific and non-netstandard APIs

You cleanly separate your viewmodel and views, and your code goes into

the viewmodel by default.

* In Xamarin.Forms projects, a dedicated UI project gives you

the same separation and benefits

go MVVM with netstandard from the beginning
(even if you focus on a single platform first)

keep your liabilities closer

-= mobile principles to live by =-

dependencies

 Xamarin lends itself to libraries and abstractions, and there are many

 Libraries can got stale for lots of reasons, some particular to the

Xamarin/Mobile

Mobile itself moves quickly and changes frequently – something that

works today may be deprecated or disallowed in a year’s time.

mobile moves fast, libraries age faster

When the next android SDK deprecates features in your dependencies,

or you want to bump your target version, what will you do if your libraries

haven’t been updated?

 If your dependencies move to newer API versions before you are ready,

how can you incorporate important bugfixes or new features?

 If you discover a bug in an abandoned library that you’re already

shipping, how will you prevent it from affecting your users?

think carefully about adding dependencies

 A private NuGet feed to host builds from forks can help out in a pinch

e.g. uptarget or downtarget a dependency

 Incorporate a bugfix that the maintainer hasn’t merged

Add InternalsVisibleTo(“yourproject”) a library (if you are feeling brave)

Consider how to best contribute fixes or changes back to mainline repos.

With OSS, we have options

win friends and influence people

-= mobile principles to live by =-

aka. get involved in the community

 For newcomers, it can be hard to know what’s out there, which libraries

are reliable, etc. it can help to start following the work of others

 Twitter is a popular platform amongst Xamarin and .NET developers

https://twitter.com/kwlothrop/lists/xamarin-mvps

 For a good summary of what’s happening, subscribe to the Weekly

Xamarin Newsletter

Xamarin has a great core community

https://twitter.com/kwlothrop/lists/xamarin-mvps

Answering the tough questions

Q1: your next cross platform mobile app

Q1: your next cross platform mobile app

NATIVE WEBVS

Q2: To Share UI, or not to Share UI

Xamarin Xamarin.Formsor

Q2: To Share UI, or not to Share UI

Xamarin Xamarin.Formsor

 Forms has been improving steadily over the years and is now open source

 You can do nice UIs with Forms: jsuarezruiz/xamarin-forms-goodlooking-UI

 Forms Embedding is a Great Thing Which You Should Definitely Use

 see Alex Dunn’s posts for some techniques (iOS, Droid)

https://github.com/jsuarezruiz/xamarin-forms-goodlooking-UI
https://alexdunn.org/2018/08/08/xamarin-tip-embed-your-xamarin-forms-pages-in-your-ios-viewcontrollers/
https://alexdunn.org/2018/07/19/xamarin-tip-embed-your-xamarin-forms-pages-in-your-android-activities/

Q2: To Share UI, or not to Share UI

jsuarezruiz/xamarin-forms-goodlooking-UI

SmartHotel BikeSharing

https://github.com/jsuarezruiz/xamarin-forms-goodlooking-UI

Q2: To Share UI, or not to Share UI

Xamarin Xamarin.Formsor

 If you want flexibility: use a native shell with first class support for embedding

 Keep Xamarin.Forms off the startup path

 Full native control over screen transitions and exterior elements

 Use viewmodel-first navigation and centralise your forms<->native smarts there

(including XF initialisation)

Even the most UI intensive apps can likely benefit from a few forms pages

Q3: <UI /> or new UI();

XAML/Designer Coded UI

But either is cool

or

Q3: <UI /> or new UI(); - iOS

XAML/Designer Coded UI

• Storyboards

✓ Single file containing screens + transitions

✓ Many ‘new’ features including static

tableview content and prototype cells

 Source control nightmare

• XIBs

✓ File per view – easy reuse, source control

 ‘New’ features not supported

• Both

✓ Easy visualisation, easy? constraints

 Difficult to model dynamic layouts

• Coded UI

✓ “Anything is possible” – dynamic layouts,

subclassing/reuse

✓ No magic – you control how and when your

view is created

 Writing constraints in code can be arduous

– DSLs (e.g. FluentLayout, EasyLayout+) help

 No design-time/preview unless you use something like Continuous

I like coded

https://github.com/FluentLayout/Cirrious.FluentLayout
https://kent-boogaart.com/blog/reducing-auto-layout-friction

Q3: <UI /> or new UI(); - Android

XAML/Designer Coded UI

• AXML

✓ The ‘right’ way to do Android UI

✓ If you have trouble with the

Xamarin.Android designer you can use

the Android Studio one.

• Coded UI

 Not impossible, just not advisable

 Some discussion here

https://forums.xamarin.com/discussion/comment/19977/#Comment_19977

Q3: <UI /> or new UI(); - Xamarin.Forms

XAML/Designer Coded UI

• XAML

✓ Good tooling support in wrt previewer

and live reloader.

✓ On VS4Mac, Mfractor adds many

significant QoL and productivity

enhancements to the XAML experience

in particular

✓ XF developer mindshare tends towards

XAML-based views

• Coded UI

✓ “Anything is possible”

 Some constructs can be more verbose to

specify in code

✓ Some constructs can be less verbose to

specify in code

 No design-time/preview unless you use something like Continuous

✓ Use CSharpForMarkup and thank Vincent

later

I like coded

https://www.mfractor.com/
https://github.com/VincentH-Net/CSharpForMarkup

Q4: Which IDE

Visual Studio VS4MacVS

I use both

Resharper

✓ UWP

✓ Generally better editor experience (IMO)

✓ Consolidate NuGet packages

✓ MFractor

✓ Better iOS experience – designer, build/deploy

Some features come to mac later than win

Q5: Your dev machine and you

Parallels BootcampVS

ESX Hyper-VVS

Q5: Your dev machine and you

The true challenge of cross platform:

You need a Mac to build/run iOS apps

You need to be running Windows + Hyper-V to run the UWP device emulator

Android is chill and runs everywhere, thanks buddy

What can we do?

 If you want to keep your options open, a Mac is a safe expensive bet

 Use Bootcamp, you can boot Windows direct or use Parallels/VMWare from OSX
(Parallels seems to perform best, this result has been consistent for several releases now)

 If you’re brave, you can also boot your OSX partition in VMWare when running in

Bootcamp: https://pigiuz.wordpress.com/2013/11/22/how-to-make-a-vm-boot-your-osx-partition-from-windows/

http://www.tekrevue.com/parallels-10-fusion-7-virtualbox-benchmark/13/
https://pigiuz.wordpress.com/2013/11/22/how-to-make-a-vm-boot-your-osx-partition-from-windows/

on some cool libraries

I ran out of time

there are only 2

 Step 1:

how to use HttpClient to query a JSON API

Reconsider.

Refit gives you automatic type-safe api client generation

hello Refit

Type-safe API methods, async,

(de)serialization come for free!
Create an interface for your API,

annotated with verb and URL stem

Supports all the best verbs, body parameters, authentication, static and dynamic request
headers and generic interface definitions.

Publish an internal nuget package with your Refit api definitions on every change and

have strongly-typed access to your apis from anywhere (e.g. in linqpad)

Akavache gives you async-friendly key-value persistence + more

persisting data – Akavache

 Has a GetAllObjects<T>() method

 Facilitates caching and expiry: GetOrFetchLatest(string key, Func<Task<T>, DateTimeOffset expiry)

 Add encryption using this one simple trick [link]

 This tutorial shows you how to do the same using a randomly generated encryption key stored in the

keychain (rather than relying on user input) [link] this implementation assumes all inputs (serialised

values) will be under the (block size – padding length: 256 – 11 = 245 bytes), If you are storing larger

payloads you can use the `CreateEncryptedData` method on iOS and a technique like [this] on android

https://kent-boogaart.com/blog/password-protected-encryption-provider-for-akavache
https://msicc.net/xamarin-forms-akavache-and-i-ensuring-protection-of-sensitive-data/
https://proandroiddev.com/secure-data-in-android-encrypting-large-data-dda256a55b36

Lottie renders Adobe After Effects animations exported as json with Bodymovin,

giving you high performance animations for little effort

super duper animations - lottie

 Support for iOS and Android natively, or via Xamarin.Forms

 Many animations available at www.lottiefiles.com for inspiration

 Great for keeping onboarding flows simple but impressive

http://www.lottiefiles.com/

Xamarin.Essentials provides easy access to cross-platform APIs for mobile

applications.

cross platform apis with no fuss - essentials

• Accelerometer

• App Information

• Battery

• Clipboard

• Compass

• Connectivity

• Data Transfer (Share)

• Device Display

Information

• Device Information

• Email

• File System Helpers

• Flashlight

• Geocoding

• Geolocation

• Gyroscope

• Launcher

• Magnetometer

• MainThread

• Maps

• Open Browser

• Orientation Sensor

• Phone Dialer

• Power

• Preferences

• Screen Lock

• Secure Storage

• SMS

• Text-to-Speech

• Version Tracking

• Vibrate

If you like interfaces, try Essential.Interfaces too!

https://github.com/rdavisau/essential-interfaces

CSharpForMarkup is a small set of extensions designed to make writing Forms UI in

code fluent and more declarative.

y even xaml am I rite

Simple helpers that make coded-ui life easier:

XAML C# (XAML-like) C# (concise)

Execute code inline Assign controls inline Enum-based row/cols

Resource roundup

• Xamarin Docs
https://docs.microsoft.com/en-us/xamarin/

• Xamarin University
https://university.xamarin.com

• Books
• Mastering Xamarin.Forms - https://www.packtpub.com/application-development/mastering-xamarinforms-second-edition

• Xamarin in Action - https://www.manning.com/books/xamarin-in-action

• You, I and ReactiveUI - https://kent-boogaart.com/you-i-and-reactiveui/

• Creating Mobile Apps with Xamarin.Forms - https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-
xamarin-forms/

docs/learning

https://docs.microsoft.com/en-us/xamarin/
https://university.xamarin.com/
https://www.packtpub.com/application-development/mastering-xamarinforms-second-edition
https://www.manning.com/books/xamarin-in-action
https://kent-boogaart.com/you-i-and-reactiveui/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/creating-mobile-apps-xamarin-forms/

• Xamarin MVP List
https://twitter.com/kwlothrop/lists/xamarin-mvps

• Public Xamarin Slack
https://xamarinchat.herokuapp.com/

• Planet Xamarin – blog aggregation
https://www.planetxamarin.com/

• Xamarin Gitter channels

 iOS/MacOS: xamarin/xamarin-macios

 Android: xamarin/xamarin-android

 Forms: xamarin/Xamarin.Forms

(social) media

Subscribe to the Weekly Xamarin Newsletter!

http://www.weeklyxamarin.com

https://twitter.com/kwlothrop/lists/xamarin-mvps
https://xamarinchat.herokuapp.com/
https://www.planetxamarin.com/
https://gitter.im/xamarin/xamarin-macios
https://gitter.im/xamarin/xamarin-android
https://gitter.im/xamarin/Xamarin.Forms
http://www.weeklyxamarin.com/

• MVVM
• MvvmCross – https://github.com/MvvmCross/MvvmCross - Popular cross-platform MVVM library, Native/Forms

• ReactiveUI – https://github.com/reactiveui/ReactiveUI - Reactive Extensions and FRP principles, Native/Forms

• MVVM Light Toolkit – http://www.mvvmlight.net/ - Light MVVM, Native/Forms

• Prism - https://prismlibrary.github.io/docs/ - Forms

• FreshMvvm - https://github.com/rid00z/FreshMvvm – Forms

• Libraries from the previous section
• Akvache - https://github.com/akavache/Akavache - An asynchronous, persistent key-value store

• Refit - https://github.com/paulcbetts/refit - The automatic type-safe REST library for Xamarin and .NET

• Lottie - https://github.com/martijn00/LottieXamarin - Beautiful animations in mobile apps

• Xamarin.Essentials - https://docs.microsoft.com/en-us/xamarin/essentials/ - Cross platform APIs for mobile

• CSharpForMarkup - https://github.com/VincentH-Net/CSharpForMarkup - Fluent, declarative coded UI for XF

frameworks/libraries

https://github.com/MvvmCross/MvvmCross
https://github.com/reactiveui/ReactiveUI
http://www.mvvmlight.net/
https://prismlibrary.github.io/docs/
https://github.com/rid00z/FreshMvvm
https://github.com/akavache/Akavache
https://github.com/paulcbetts/refit
https://github.com/martijn00/LottieXamarin
https://docs.microsoft.com/en-us/xamarin/essentials/
https://github.com/VincentH-Net/CSharpForMarkup

• Library Roundups
• Awesome Xamarin - https://github.com/XamSome/awesome-xamarin

• Awesome Xamarin.Forms - https://github.com/jsuarezruiz/awesome-xamarin-forms

• Goodlooking Xamarin.Forms - https://github.com/jsuarezruiz/xamarin-forms-goodlooking-UI

frameworks/libraries
(continued)

https://github.com/XamSome/awesome-xamarin
https://github.com/jsuarezruiz/awesome-xamarin-forms
https://github.com/jsuarezruiz/xamarin-forms-goodlooking-UI

• UrhoSharp
• UrhoSharp [repo]

https://github.com/xamarin/urho

• Docs [official Xamarin documentation]

https://docs.microsoft.com/en-us/xamarin/graphics-games/urhosharp/

• Introduction to UrhoSharp presentation
https://ryandavis.io/introduction-to-urhosharp/

• Virtual/Mixed Reality Apps with C# [Build 2017 session]

https://channel9.msdn.com/Events/Build/2017/T6052

• Urho3d [official website]
https://urho3d.github.io/

game dev

https://github.com/xamarin/urho
https://docs.microsoft.com/en-us/xamarin/graphics-games/urhosharp/
https://ryandavis.io/introduction-to-urhosharp/
https://channel9.msdn.com/Events/Build/2017/T6052
https://urho3d.github.io/

• App Center
• appcenter.ms [official website]

https://appcenter.ms/

• Docs [official Xamarin documentation]

https://docs.microsoft.com/en-us/appcenter/

• Introduction to Visual Studio App Center presentation
https://ryandavis.io/introduction-to-visual-studio-app-center/

• Azure DevOps
• Step by step guides for setting up Xamarin Builds [james montemagno’s blog posts]

https://montemagno.com/tag/continuous-integration/

• Misc
• Mobile.BuildTools [helper library for CI tasks and Xamarin Projects]

https://github.com/dansiegel/Mobile.BuildTools

ci/cd

https://appcenter.ms/
https://docs.microsoft.com/en-us/appcenter/
https://ryandavis.io/introduction-to-visual-studio-app-center/
https://montemagno.com/tag/continuous-integration/
https://github.com/dansiegel/Mobile.BuildTools

• iOS
• Ray Wenderlich’s site - http://www.raywenderlich.com/

• iOS Dev Weekly - https://iosdevweekly.com/

• iOS Dev Center [apple’s own] - https://developer.apple.com/ios/

• Droid
• developer.android.com [it’s official] - http://developer.android.com/index.html

+ approximately 999,999,999,999 courses on Pluralsight

native platforms

http://www.raywenderlich.com/
https://iosdevweekly.com/
https://developer.apple.com/ios/
http://developer.android.com/index.html

podcasts/videos

• The Xamarin Show - https://channel9.msdn.com/Shows/XamarinShow

• Merge Conflict - https://www.mergeconflict.fm

• Gone Mobile - https://www.gonemobile.io

https://channel9.msdn.com/Shows/XamarinShow
https://www.mergeconflict.fm/
https://www.gonemobile.io/

questions / thanks

