
Introduction to UrhoSharp

RYAN DAVIS

Queensland C# Mobile Developers Meetup

2017 10 24

• Ryan Davis

• Hobby Developer, .NET and mobile

• Xamarin Microsoft MVP

whoami

ryandavis.io rdavis_au rdavisau

 Overview of UrhoSharp

 Walk through the framework

 Samples and Demos

to cover

what is it?

-= introduction to urhosharp =-

a cross-platform 3D game engine for .NET

“UrhoSharp is a lightweight Game Engine suitable for using with C# and F# to

create games and 3D applications […] powered by Urho3D (github readme)

 Urho3D – a 3D game engine:

 3D rendering, scenes, physics, audio, declarative logic

 built upon common tooling/frameworks – Bullet, box2d, Open Assets Library etc.

 UrhoSharp is a .NET binding to Urho3D

 write your code in C# or F# (yay); async friendly api

 bootstrap per platform + shared codebase (like forms)

 access to the .NET ecosystem and features

 bindings is open source and hosted on github

wpf

uwp

ios
android

osx

windows
forms

xamarin
forms

h o l o l e n s

a cross-platform 3D game engine for .NET

“UrhoSharp is a lightweight Game Engine suitable for using with C# and F# to

create games and 3D applications […] powered by Urho3D (github readme)

 the benefit of being “just” a wrapper over the Urho3D engine

 based on a game framework that has been in development for ~10 years

 you aren’t limited to Xamarin/UrhoSharp documentation – examples for Urho3D will apply!

 “value add”

 through saner c# API,

 integration with Xamarin products

pictured: actual Urho3D logo

 UrhoSharp has been around for a while

 Bindings developed during second half of 2015 and released late 2015

 Still active in 2017.

timelines

First commit
June 2015

Announced
Dec 2015

What’s all this??

xamarin/urho

• Maintaining bindings against new Urho3D releases

• Platform integrations – Forms, Workbooks

• Bugfixes, API improvements

the framework

-= introduction to urhosharp =-

framework class structure (abridged)

class Class Model

Application

Renderer

Viewport

SceneCamera

Application and Rendering
class asdasd

Scene

Node

Component

StaticModelLight Camera RigidBodySoundSource (more)

Octree

PhysicsWorld

Scene/Node Hierarchy

User Interface

class UI

UIElement

ListView

BorderImage DropDown

Button

Checkbox ScrollView

Text Sprite

Tooltip Slider

Animation and transforms

class UI

Action

Fade

Move Rotate

Scale

Control Ease

Audio
class Class Model

SoundSource

SoundSource3D

SoundListener

Physics

an urhosharp application

 Your game derives from the Application class, which

includes a Renderer and typical lifecycle callbacks

 Your Application and game logic live in shared code

 Two approaches to running the game:

 You can take an ‘embedded’ approach, running the

UrhoSharp component/s in a section or view of your app -

UrhoSharp provides ‘Surface’ classes that derive from native
views, e.g. UIView on iOS and Fragment on Android.

OR

 Your native projects can be limited to the ‘Bootstrap’ code

necessary to transfer control to the UrhoSharp engine (similar

to a Xamarin forms app).

Typical project structure

Native bootstrap
(that’s all!)

scene hierarchy

 A Scene is the root of a game ‘world’ and is rendered

into a Viewport by a Camera

 A Scene contains a hierarchy of Nodes

 A Node has an identifier and a translation in 3D-space

 A Node may contain child Nodes

 A Node can contain Components which add behaviour

 StaticModel – allows the the node to be rendered

 RigidBody – allows the node to participate in physics

 SoundSource – allows the node to emit audio

 Light – allows the node to emit light

 Actions can also be attached to a Node, allowing

declarative specification of behaviour.

class UI

Overworld

Player

Monster

Health Pickup

RigidBody

Weapon

StaticModel

StaticModel

StaticModel

RigidBody

MoveTo

class UI

Overworld

Player

Monster

Health Pickup

RigidBody

Weapon

StaticModel

StaticModel

StaticModel

RigidBody

MoveTo

class UI

Overworld

Player

Monster

Health Pickup

RigidBody

Weapon

StaticModel

StaticModel

StaticModel

RigidBody

MoveTo

class UI

Overworld

Player

Monster

Health Pickup

RigidBody

Weapon

StaticModel

StaticModel

StaticModel

RigidBody

MoveTo

class Class Model

Scene Node Component Action

class Class Model

Scene Node Component Action

class Class Model

Scene Node Component Action

class Class Model

Scene Node Component Action

Legend

Instance Hierarchy

game logic – declarative or runloop

 Run an Action on a Node to declaratively specify behaviour and timing

 Many actions included in the framework, or you can define your own

• Translation: MoveTo/By, BezierTo/By, RotateTo/By, ScaleTo/By

• Appearance: FadeIn/Out/To, TintTo/By

• Control: Reverse, Delay, Parallel, CallFunc,

• Interpolation: InOut, Bounce, Sine, Elastic, Exponential

 Actions are designed to compose to allow specification of complex behaviours

• RepeatForever(EaseBounce(Sequence(FadeIn, FadeOut)))

[fade the node in then out indefinitely, with a bounce easing)]

 Perform work on a per-frame basis within your Scene and/or Component subclasses

 In a Scene, register handlers for SceneUpdate, SceneSubsystemUpdate and/or ScenePostUpdate

 In a Component subclass, set ReceiveSceneUpdates and override OnUpdate

 Using async adds another dimension to logic, simplifying otherwise complex scenarios.

user interface

 Subclasses of UIElement provide a basic UI capability

to UrhoSharp games

 UI elements are rendered directly to the screen, and

are not impacted by the scene hierarchy

 Many familiar controls are supported

 Some support for layout and alignment

 Add controls to {AppInstance}.UI.Root.

 Text (i.e. label)

 TextEntry

 ListView

 ScrollView

 Slider

 DropDownList

 Button

 CheckBox

 Window

 MessageBox

one two many dimensions?

 UrhoSharp is a 3D engine but it can still be used to

create 2D games

 Call SetOrthographic(true)on the rendered

Camera to give your 3D world a 2D representation

 Use the 2D-friendly classes and components for an

optimised experience

 UrhoSharp includes 2D sprite, spritesheet, texture, tile

and particle effect classes

 box2d (used by many other game engines), is also

used for physics in 2D UrhoSharp games.

hololens

nuff said

(check out the UrhoSharp.SharpReality package on NuGet)

https://www.nuget.org/packages/UrhoSharp.SharpReality/

tooling support

 Project templates for VS [link]

Cross-platform quickstart for iOS, Android and Desktop

 UrhoEditor [link]

Design scene hierarchies using a GUI

 Particle Designer [link] ($)(osx only)

Design and preview particle effects using a GUI

 Open3Mod [link]

3D viewer and editor for model formats supported by Urho3D

https://marketplace.visualstudio.com/items?itemName=EgorBogatov.UrhoSharpTemplates
https://urho3d.github.io/
https://marketplace.visualstudio.com/items?itemName=EgorBogatov.UrhoSharpTemplates
http://www.open3mod.com/

Demo time

-= introduction to urhosharp =-

demos

Everything available at https://github.com/xamarin/urho-samples

FeaturesSample SamplyGame
(+ a few modifications)

https://github.com/xamarin/urho-samples

closing

-= introduction to urhosharp =-

on choices

 In 2017, if you want to build a game and use C# you are spoilt for choice:

 Each of these generally involves trade-offs across one of several dimensions –

licensing, tooling, supported platforms, C# version, support, community, etc..

UrhoSharp Unity3D Unreal Engine Xenko Engine

Atomic Game Engine
(Urho3D fork)

Wave Engine Duality MonoGame

where next?

-= introduction to urhosharp =-

things I didn’t cover

• Networking
UrhoSharp has built in cross-platform networking, including low level transport and high level scene-replication functionality

• Audio
Powered by libvorbis, UrhoSharp includes cross-platform audio support – 2D and “3D”

• Physics
The Bullet and box2d physics libraries are used by UrhoSharp for 3D and 2D worlds respectively. The physics concepts and
interaction methods will be familiar if you have used physics libraries in other engines

• Serialisation and Prefabs
UrhoSharp has serialisation baked into the framework, allowing you to serialise or deserialise entire scene hierarchies for ‘free’ (note
that any custom component subclasses will need to ‘tell’ the framework about the additional properties that should be serialised
and handle the deserialisation of these only).

Serialisation also allows you to implement the concept of ‘prefabs’ – predefined node hierarchies of objects you may want to
spawn multiple times in your game.

useful resources

• UrhoSharp Github
https://github.com/xamarin/urho

• Xamarin UrhoSharp Documentation
https://developer.xamarin.com/guides/cross-platform/urho/

• Urho3D page
https://urho3d.github.io/

• UrhoSharp Samples
https://github.com/xamarin/urho-samples

• UrhoSharp Workbooks
https://github.com/xamarin/Workbooks/tree/master/graphics/urhosharp

https://github.com/xamarin/urho
https://developer.xamarin.com/guides/cross-platform/urho/
https://urho3d.github.io/
https://github.com/xamarin/urho-samples
https://github.com/xamarin/Workbooks/tree/master/graphics/urhosharp

questions / thanks

